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Genetically modified mice have been extensively used for
analyzing the molecular events that occur during tumor
development. In many, if not all, cases, however, it is uncertain
to what extent the mouse models reproduce features observed
in the corresponding human conditions1–3. This is due largely
to lack of precise methods for direct and comprehensive
comparison at the molecular level of the mouse and human
tumors. Here we use global gene expression patterns of 68
hepatocellular carcinomas (HCCs) from seven different mouse
models and 91 human HCCs from predefined subclasses4 to
obtain direct comparison of the molecular features of mouse
and human HCCs. Gene expression patterns in HCCs from
Myc, E2f1 and Myc E2f1 transgenic mice were most similar to
those of the better survival group of human HCCs, whereas the
expression patterns in HCCs from Myc Tgfa transgenic mice
and in diethylnitrosamine-induced mouse HCCs were most
similar to those of the poorer survival group of human HCCs.
Gene expression patterns in HCCs from Acox1�/� mice and
in ciprofibrate-induced HCCs were least similar to those
observed in human HCCs. We conclude that our approach
can effectively identify appropriate mouse models to study
human cancers.

The success of comparative sequence analysis in identifying and
characterizing genomic regulatory regions with important functional
roles is due to the fact that these regions evolve at a slower rate than
less important regions5–8. Although many of the functional genomic
elements are protein-coding sequences, a large number of conserved
sequences are probably regulatory elements with roles in modulating
gene expression9,10. We therefore hypothesize that if regulatory ele-
ments of evolutionarily related species are conserved, gene expression
signatures reflecting similar phenotypes in the species would also be
conserved. To test this hypothesis, we investigated whether compar-
ison of global expression patterns of orthologous genes in human and
mouse HCCs would identify similar and dissimilar tumor phenotypes,
and thus allow the identification of the best-fit mouse models for
human HCC.

We characterized gene expression patterns of 68 HCCs from seven
different mouse models: two chemically induced (ciprofibrate and
diethylnitrosamine, DENA)11–13, four transgenic (targeted overexpres-
sion of Myc, E2f1, Myc and E2f1, and Myc and Tgfa in the liver)14–16

and one knockout (Acox1�/�)17. We first applied hierarchical cluster-
ing analysis of gene expression patterns to assess the relative simila-
rities among different mouse HCC models. We identified three
distinctive HCC clusters, indicating that gene expression patterns of
mouse HCC are clearly heterogeneous (Fig. 1). As expected, ciprofi-
brate-induced HCCs and HCCs from Acox1�/� mice were closely
clustered (cluster 3) and well-separated from the other mouse models.
Ciprofibrate is a synthetic peroxisome proliferator that is a nongeno-
toxic hepatocarcinogen12. Acox1�/� mice develop HCCs due to
accumulation of unmetabolized very long-chain fatty acids that
serve as endogenous ligands of Ppara receptor17. Cluster 2 largely
consisted of HCCs from Myc, E2f1 and Myc E2f1 transgenic mice,
indicating that overexpression of Myc and E2f1 may support similar
signaling networks during hepatocarcinogenesis. HCCs induced by
DENA, a genotoxic hepatocarcinogen, closely clustered with those
from Myc Tgfa transgenic mice (cluster 1). This may indicate that gene
expression patterns in cluster 1 reflect extensive chromosomal damage
during tumor development, which known to occur in both DENA-
induced liver tumors and liver tumors in Myc Tgfa transgenic mice18.

Given the three distinctive subgroups of mouse HCC models, we
sought to examine how well these models recapitulate human HCC
phenotypes as defined by gene expression patterns. In our previous
study using similar microarray technology, we identified two distinc-
tive subclasses of human HCCs that are highly associated with the
survival of individuals with HCC4. Because we used two different
microarray platforms to study mouse and human HCC, we selected
orthologous genes that were present in both microarrays by using
curated mammalian orthology from The Jackson Laboratory. A total
of 4,036 orthologous genes were present in both microarrays. We
selected orthologous genes whose expression changed nontrivially for
further analysis (1,650 genes). We then standardized gene expression
ratios separately to a mean 7 s.d. of 0 7 1 in each data set. In
hierarchical clustering analysis of the integrated data, the three

Published online 21 November 2004; doi:10.1038/ng1481

1Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4262,
USA. 2Department of Pathology, Northwestern University, the Feinberg School of Medicine, Chicago, Illinois 60611-3008, USA. Correspondence should be addressed
to S.S.T. (snorri_thorgeirsson@nih.gov).

1 30 6 VOLUME 36 [ NUMBER 12 [ DECEMBER 2004 NATURE GENETICS

L E T T E R S
©

20
04

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

eg
en

et
ic

s



previously identified subgroups of mouse HCC and two subclasses of
human HCC were still well separated from each other (Fig. 2). Gene
expression patterns of HCCs from Myc, E2f1 and Myc E2f1 transgenic
mice were most similar to those of the better survival group of human
HCCs (subclass B), whereas the expression patterns of HCCs from
Myc Tgfa transgenic mice and DENA-induced mouse HCCs were
most similar to those of the poorer survival group of human HCCs
(subclass A). Gene expression patterns of HCCs from Acox1�/� mice
and ciprofibrate-induced HCCs were least similar to most human
HCCs, and clustered with only a small fraction of them (Fig. 2b and
Supplementary Fig. 1 online). We observed similar results when
we used the ‘survival genes’4 found among the orthologous genes
for cluster analysis (Supplementary Note and Supplementary Fig. 2
online). These data strongly suggest that hepatocarcinogenesis driven
by peroxisome proliferation in mice proceeds through a carcinogenic
pathway not frequently observed in humans, and they support
previous studies suggesting that the human liver is insensitive to
peroxisome proliferators19,20.

We next applied supervised learning methods to validate the
unsupervised cluster analysis. We applied five independent prediction
methods to determine which of the mouse models might best mimic
the human phenotypes. We used the gene expression data sets from
the two subclasses of human HCCs to train prediction methods. All
methods predicted that most HCCs from Myc Tgfa transgenic mice
are relatively similar to subclass A, whereas HCCs from the other
models are relatively similar to subclass B (Table 1). By w2 test of each
predicted pattern, we determined that the predicted outcome of HCCs
from Myc Tgfa transgenic mice significantly differs from that of the
rest of models (P o 0.005), whereas the predicted outcome of HCCs
from Myc E2f1 transgenic mice does not differ significantly from those
of HCCs from Myc or E2f1 transgenic mice (P 4 0.05). In addition,

when we examined the subclass memberships of the tumors as
determined by various prediction methods, we observed only a few
discrepancies (Supplementary Fig. 3 online). Taken together, these
results support the notion that better- or best-fit mouse models for
human studies can be identified by applying genome-scale compar-
ison of gene expression patterns.

By directly comparing the relative expression ratio of orthologous
genes between human and mouse, we assessed how closely the mouse
models mimic the gene expression activity of two human HCC
subclasses. From the integrated gene expression data set, excluding
HCCs from Acox1�/� and ciprofibrate-treated mice, human and
mouse HCCs were divided into two groups based on outcomes
from the prediction methods. We selected the top 500 genes that are
differentially expressed between subclass A and subclass B. We
calculated and compared relative average gene expression ratios
between subclass A and subclass B in each species. With few excep-
tions, the relative difference of the expression of the 500 orthologous
genes between two subgroups of mouse models is highly similar to
those in humans (Supplementary Fig. 4 online). We used indepen-
dent t-tests to select orthologous genes that had significant differences
in expression between subclass A and subclass B in both species
(P o 0.05 in both t-tests) and yielded 329 genes. We used knowledge-
based annotation of 329 genes based on a public database search. The
genes fell into several functional groups (Table 2 and Supplementary
Table 1 online). As observed in previous studies4,21, genes involved in
the regulation of cell growth and proliferation were the best predictors
of an unfavorable outcome of human cancers. All orthologous mouse
genes in this category were more highly expressed in Myc Tgfa
transgenic and DENA-treated mice (subclass A–like) than the rest of
the mice (subclass B–like). Expression of positive regulators of cell
cycle, such as CDK4 (Cdk4), CDC25A (Cdc25a), CDC7 (Cdc7) and
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Figure 1 Cluster analysis of mouse HCCs. (a) Unsupervised hierarchical cluster analysis of 68 mouse HCC

tumors. Genes with an expression ratio that differed by a factor of at least 2 from the reference in at least

four tissues were selected for hierarchical analysis (2,313 gene features). A hierarchical clustering

algorithm based on Pearson correlation coefficients was applied to group genes on the basis of similarity in

the pattern over all tissues and tissues on the basis of similarity in the pattern over all genes. The data are

presented in matrix format in which columns represent individual tissue and rows represent each gene.

Each cell in the matrix represents the expression level of a gene feature in an individual tissue. The red

and green colors in cells reflect high and low expression levels, respectively, as indicated in the scale bar

(log2-transformed scale). (b) Dendrogram of cluster analysis. Mouse HCC tissues were separated into three

main groups.
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MAPK3 (Mapk3), was greater in subclass A than subclass B in both
species. As expected from our previous study4, many orthologous
genes that are more highly expressed in subclass A in both species are
antiapoptotic. Many poor prognostic markers in human cancers were
also more highly expressed in subclass A in both species.

We next examined whether the predicted biological similarities
between human HCC and mouse models were faithfully reflected in

measurable phenotypes of each subclass. Proliferation rates were
significantly higher in subclass A than subclass B in both species
(P o 1.0 � 10�4 in human, P o 1.0 � 10�9 in mouse), and apoptosis
rates were significantly lower in subclass A than subclass B in both
species (P o 1.0 � 10�6 in human, P o 1.0 � 10�4 in mouse;
Fig. 3a,b). Because previous studies indicated that the degree of
ubiquitination in HCCs is highly associated with prognosis of affected
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Myc (Mm)

E2f1 (Mm)

Myc E2f1 (Mm)

Myc Tgfa (Mm)

Acox1–/– (Mm)
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Figure 2 Cluster analysis of integrated human and mouse HCC. (a) Unsupervised hierarchical cluster analysis of integrated 68 mouse and 91 human HCC

tumors. Orthologous genes with an expression ratio that differed by a factor of at least 2 from the reference in at least 10% of tissues in one of the data

sets were selected for hierarchical analysis (1,650 genes). The data are presented in matrix format in which columns represent individual gene and rows

represent each tissue. (b) Dendrogram of cluster analysis. Red and blue bars represent human and mouse HCC tissues, respectively. The identity of each

HCC tissue is shown at the end of each row.

Table 1 Outcomes of the gene expression–based prediction methods

CCP 1NN 3NN NC SVM LDA

Predicted subclass A B A B A B A B A B A B

Human HCC

Subclass A (n ¼ 41) 41 0 40 1 39 2 41 0 41 0 41 0

Subclass B (n ¼ 50) 2 48 2 48 2 48 2 48 2 48 2 48

Percentage correctly classifieda 98 97 96 98 98 98

Mouse HCC

DENA (n ¼ 3) 1 2 1 2 1 2 1 2 1 2 1 2

Myc (n ¼ 8) 0 8 0 8 0 8 0 8 0 8 0 8

E2f1 (n ¼ 10) 1 9 1 9 1 9 1 9 1 9 1 9

Myc E2f1 (n ¼ 9) 3 6 2 7 3 6 3 6 2 7 3 6

Myc Tgfa (n ¼ 9) 7 2 7 2 7 2 7 2 7 2 7 2

P (w2)b 0.0048 0.0031 0.0048 0.0048 0.0031 0.0048

P (w2) without Myc Tgfac 0.053 0.11 0.053 0.053 0.11 0.053

aPercentage for correct prediction during leave-one-out cross-validation. bP values of w2 test were computed for contingency tables of all mouse HCCs: for example, (1,2), (0,8), (1,9), (3,6) and
(7,2) were used to compute P value for CCP. cP values of w2 test were computed for contingency tables of mouse HCCs without Myc Tgfa: for example, (1,2), (0,8), (1,9) and (3,6), were used to
compute P value for CCP.
CCP, compound covariate predictor; 1NN, one nearest neighbor; 3NN, three nearest neighbor; NC, nearest centroid; SVM, support vector machines; LDA, linear discriminator analysis.
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Table 2 Summary of selected genes

Unigene Gene symbol Log ratio (A/B)*

Human Mouse Human Mouse Description Human Mouse

Nuclear pore transport

Hs.113503 Mm.151329 RANBP5 Kpnb3 Karyopherin (importin) beta 3 0.97 0.81

Hs.180446 Mm.16710 KPNB1 Kpnb1 Karyopherin (importin) beta 1 0.98 0.75

Hs.90073 Mm.22417 CSE1L Cse1l Chromosome segregation 1-like (budding yeast); Exportin 1.13 0.90

Anti-apoptosis

Hs.75462 Mm.239605 BTG2 Btg2 BTG family, member 2 0.71 1.46

Hs.171391 Mm.226905 CTBP2 Ctbp2 C-terminal binding protein 2 0.80 0.75

Hs.75562 Mm.5021 DDR1 Ddr1 Discoidin domain receptor family, member 1 0.69 1.49

Hs.180414 Mm.197551 HSPA8 Hspa8 Heat shock 70kDa protein 8 0.77 1.25

Hs.145279 Mm.28805 SET Set SET translocation (myeloid leukemia-associated) 1.03 0.76

Hs.115770 Mm.6426 TNFSF11 Tnfsf11 Tumor necrosis factor (ligand) superfamily, member 11 0.81 0.85

Hs.373508 Mm.3399 TRAF2 Traf2 TNF receptor-associated factor 2 0.67 0.78

Hs.349530 Mm.3308 YWHAH Ywhah Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein 1.12 0.88

Cell growth and proliferation

Hs.152759 Mm.22430 ASK Ask Activator of S phase kinase 1.15 0.96

Hs.1634 Mm.29800 CDC25A Cdc25a Cell division cycle 25A 0.58 1.32

Hs.28853 Mm.20842 CDC7 Cdc7 CDC7 Cell division cycle 7-like 1 (budding yeast) 0.84 0.95

Hs.95577 Mm.6839 CDK4 Cdk4 Cyclin-dependent kinase 4 1.31 0.93

Hs.122579 Mm.2995 ECT2 Ect2 Epithelial cell transforming sequence 2 oncogene 1.39 0.98

Hs.401150 Mm.15918 MAP3K1 Map3k1 Mitogen-activated protein kinase kinase kinase 1 0.53 1.48

Hs.861 Mm.8385 MAPK3 Mapk3 Mitogen-activated protein kinase 3 0.85 0.81

Hs.179565 Mm.4502 MCM3 Mcm3 Minichromosome maintenance deficient 3 1.09 1.02

Hs.155462 Mm.4933 MCM6 Mcm6 Minichromosome maintenance deficient 6 1.25 1.34

Hs.89901 Mm.36865 PDE4A Pde4a Phosphodiesterase 4A 0.71 1.09

Hs.13501 Mm.28659 PES1 Pes1 Pescadillo homolog 1, containing BRCT domain (zebrafish) 0.93 0.78

Hs.93837 Mm.1860 PITPNM1 Pitpnm1 Phosphatidylinositol transfer protein, membrane-associated 1; Nir2 0.64 1.20

Hs.78944 Mm.28262 RGS2 Rgs2 Regulator of G-protein signaling 2, 24kDa 1.11 0.80

Hs.68061 Mm.20944 SPHK1 Sphk1 Sphingosine kinase 1 1.30 1.04

Hs.79150 Mm.46781 CCT4 Cct4 Chaperonin containing TCP1, subunit 4 (delta) 1.07 0.68

Hs.1600 Mm.1813 CCT5 Cct5 Chaperonin containing TCP1, subunit 5 (epsilon) 0.96 1.16

Hs.108809 Mm.914 CCT7 Cct7 Chaperonin containing TCP1, subunit 7 (eta) 1.06 0.75

Hs.178551 Mm.30066 RPL8 Rpl8 Ribosomal protein L8 0.73 1.08

Hs.182825 Mm.16423 RPL35 Rpl35 Ribosomal protein L35 1.04 0.97

Hs.406682 Mm.3229 RPL26 Rpl26 Ribosomal protein L26 0.98 0.90

Hs.425293 Mm.2424 RPL10A Rpl10a Ribosomal protein L10a 0.93 0.84

Hs.298262 Mm.103634 RPS19 Rps19 Ribosomal protein S19 1.22 0.78

Hs.433411 Mm.11376 RPL36 Rpl36 Ribosomal protein L36 0.93 0.77

Hs.180450 Mm.16775 RPS24 Rps24 Ribosomal protein S24 1.03 0.77

Hs.301547 Mm.5281 RPS7 Rps7 Ribosomal protein S7 0.95 0.74

Hs.380843 Mm.1139 RPS6 Rps6 Ribosomal protein S6 1.09 0.71

Hs.153 Mm.37835 RPL7 Rpl7 Ribosomal protein L7 0.58 1.17

Proteinases

Hs.78056 Mm.930 CTSL Ctsl Cathepsin L 0.70 0.73

Hs.18069 Mm.17185 LGMN Lgmn Legumain 0.74 1.04

Hs.2256 Mm.4825 MMP7 Mmp7 Matrix metalloproteinase 7 (matrilysin, uterine) 0.69 1.71

Hs.151738 Mm.4406 MMP9 Mmp9 Matrix metalloproteinase 9 (gelatinase B, 92kDa gelatinase, 92kDa 0.83 1.24

Hs.1695 Mm.2055 MMP12 Mmp12 Matrix metalloproteinase 12 (macrophage elastase) 0.67 0.79

Poor Prognosis Markers

Hs.375108 Mm.6417 CD24 Cd24 CD24 antigen (small cell lung carcinoma cluster 4 antigen) 0.99 1.45

Hs.433996 Mm.4426 CD63 Cd63 CD63 antigen (melanoma 1 antigen) 0.84 1.62

Hs.275243 Mm.100144 S100A6 S100a6 S100 calcium binding protein A6 (calcyclin) 1.20 1.20

Hs.8036 Mm.260157 RAB3D Rab3d Member RAS oncogene family 0.91 1.53

Hs.155421 Mm.80 AFP Afp Alpha-fetoprotein 0.97 1.45

Hs.82961 Mm.4641 TFF3 Tff3 Trefoil factor 3 (intestinal) 0.55 1.57

*Average gene expression ratios (log2-transformed) between subclass A and subclass B in human HCCs and between cluster 1 (human subclass A–like) and cluster 2 (human subclass B–like) in
mouse HCCs.
We did not include the genes downregulated in subclass A, because most of these genes are involved in the metabolic pathways of the liver, and downregulation of these genes merely reflects the
more severe loss of liver function (complete list of genes is available in Supplementary Table 1 online).
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individuals4,22, we compared the ubiquitination index of HCCs. In
both species, the degree of ubiquitination was significantly higher in
subclass A than subclass B (P o 1.0 � 10�5 in human, P o 1.0 �
10�14 in mouse; Fig. 3c).

Next, we compared gene expression patterns of mouse HCCs with
human nonliver cancers to assess whether the gene expression patterns
shared in human and mouse HCCs truly reflect biological similarity of
tumorigenesis in liver of both species. We used previously published
data sets of human diffuse large B-cell lymphoma23 and ovarian
cancer24. Both studies showed that the tumors segregated into two
subgroups whose gene expression patterns well reflect proliferative
properties of the tumor cells. We selected orthologous genes and
standardized them as described in Supplementary Tables 2 and 3
online. In each comparison, we used human data for training
prediction methods and assigned the mouse samples to the prediction
set. In both analyses, most prediction methods successfully separated
subgroups of human cancers clustered together in previous studies
during leave-one-out cross validation in training sets, but they failed
to segregate Myc Tgfa transgenic mice from the rest of mouse models
or to produce concordant outcomes among prediction methods
(Supplementary Tables 2 and 3 online). These results using methods
trained on nonliver data sets are highly discordant to those using the
same prediction methods trained on liver data, indicating that gene
expression patterns shared in human and mouse HCCs are liver-
specific and do not represent relative similarity of proliferation. Taken
together, our data suggest that mouse models that reflect gene
expression patterns observed in two subclasses of human HCC may,
to a considerable extent, recapitulate the underlying biology of the
tumorigenesis in human liver.

In this study, we showed that cross-species comparison of gene
expression patterns of HCCs can be used to identify the mouse models
that are most similar to human HCCs. Moreover, this approach may
be used to identify the most relevant mouse models for subclasses of
human HCC. Gene expression–based prediction of mouse models is
highly concordant with our earlier observation of phenotypes in mice.
Myc Tgfa transgenic mice typically have a poor prognosis, including
earlier and higher incident rate of HCC development, higher mortal-
ity, higher genomic instability and higher expression of poor prog-
nostic markers (e.g., Afp)18,25. Myc and Myc E2f1 transgenic mice have
a relatively higher frequency of mutations in b-catenin (Catnb) and
nuclear accumulation of b-catenin that are indicative of lower
genomic instability and better prognosis in human HCC26. As
demonstrated by cross-species similarities in relative expression ratio

of orthologous genes between subclasses (Supplementary Figs. 4
and 5 online) and measurable phenotypes (Fig. 3), mimicry of the
mouse models of subclasses of human HCC may, to a large extent, be
due to the similarity in the underlying biology of the disease. Although
the precise molecular mechanism driving hepatocarcinogenesis
in both species is yet to be determined, the relative similarity of
Myc Tgfa transgenic mice to human subclass A HCCs indicates that
the signaling pathways driven by the receptor for TGFA or its related
receptors have a role in prognosis for human HCC. The clear gain to
be realized from this new approach, comparative functional oncoge-
nomics, is to connect molecular pathogenic features of human cancer
to mouse models with a greater level of confidence. Establishing
this molecular relationship between the mouse models and the
human cancers should provide new opportunities to explore research
avenues into molecular pathogenesis, treatment and prevention of
human cancer.

METHODS
Microarrays. We obtained mouse GEM2 cDNA clones from Incyte Genomics,

and arrays were printed on preprepared glass slides at the Advanced Technology

Center (National Cancer Institute).

Preparation of RNA and microarray. We isolated total RNAs from frozen

liver tissue using CsCl density-gradient centrifugation methods27.We pooled

total RNA from the livers of ten wild-type mice and used them as reference

in entire microarray experiments. To obtain gene expression profile data

from four transgenic HCC mouse models, we used 20 mg of total RNAs

from tissues to drive fluorescently (Cy-5 or Cy-3) labeled cDNA. We carried

out at least two hybridizations for each tissue using dye-swap strategy to

eliminate dye-labeling bias as described4. We used previously published data

for HCCs from Acox1�/�, DENA-treated and ciprofibrate-treated mice28.

We generated the data from each mouse model using the same microarray

platform and reference RNA. Animal housing and care were in accordance

with guidelines from the Animal Care and Use Committee of the National

Cancer Institute.

Data analysis. We transformed and normalized mouse gene expression data as

described4. We then averaged expression ratios of each gene from replicated

experiments and used them in subsequent analysis. When genes were repre-

sented more than once in the microarray platform, we used the averaged

expression ratios. To identify the genes whose expression changed nontrivially,

we selected genes with o30% missing expression data across the tissues in each

data set and an expression ratio that differed from reference by a factor of at

least 2 in at least 10% of tissues in each data set for further analysis (1,650

genes). Before integrating the two data sets, we standardized the expression of

each gene to mean 7 s.d. of 0 7 1 independently in both data sets as
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Figure 3 Comparison of measurable phenotypes between two subclasses in human and mouse HCC. (a) Cell proliferation index as measured by

immunohistochemical staining with antibodies to PCNA (mouse) and to Ki-67 (human). Values shown are mean 7 s.e. per 100 cells counted. (b) Apoptosis

index, measured as the number of apoptotic cells per 100 cells counted. (c) Ubiquitination index, as measured by immunohistochemical staining with

antibody to ubiquitin. Values shown are mean 7 s.e. per 100 cells counted. P values were calculated by applying two sample t-test from each comparison.
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described29. We applied hierarchical clustering analysis as described4. To select

genes that are differentially expressed in two given groups of tissues, we

used significance analysis of microarrays30 as a method for two-sample

t-test with the estimation of false discovery rate. We chose a cut-off to retain

the top 500 genes in the comparison. The predicted number of false discoveries

in the first 500 genes was o1. Primary microarray data is available in the

National Center for Biotechnology Information’s Gene Expression Omnibus

public database.

Prediction of mouse models for human cancer study. We applied five

different prediction methods: linear discriminator analysis, support vector

machines, nearest centroid, nearest neighbor and compound covariate pre-

dictor. Before the analysis, we removed mouse HCCs from Acox1�/� mice and

ciprofibrate-induced HCCs from the mouse data set, because both cluster

analyses indicated that they are least similar to human HCCs. We then selected

for further analysis orthologous genes with o30% missing expression data

across the tissues in each data set and with an expression ratio that differed by a

factor of at least 2 from reference in at least 10% of tissues in each data set

(1,950 genes). We used gene expression data from two predefined subclasses of

human HCC to develop and train the prediction methods. We started to

identify the most differentially expressed genes between subclass A (n ¼ 41)

and B (n ¼ 50) in the human data set. We combined these genes (248 genes,

P o 1.0 � 10�6) to form a series of classifiers that estimate the probability that

a particular HCC tissue belongs to subclass A or subclass B. The number of

genes in the classifiers was optimized to minimize misclassification errors

during the leave-one-out cross-validation of the human data set.

Proliferation and ubiquitin indices. We carried out immunohistochemical

staining on 10% formalin-fixed, paraffin-embedded tissues. We removed the

paraffin from sections and incubated them in 3% H2O2 dissolved in

1� phosphate-buffered saline for 30 min and then microwaved them in

10 mM citrate buffer (pH 6.0) for 12 min. We applied mouse monoclonal

antibody to PCNA (Santa Cruz Biotechnology; dilution 1:1,000), antibody to

Ki-67 (Novocastra Laboratories) and rabbit polyclonal antibody to ubiquitin

Ab-1 (Neomarkers, Fremont). We visualized immunoreactivity with the

Vectastain Elite ABC kit (Vector Laboratories) and 3,3¢ DAB (Dako Corpora-

tion) as the chromogen. We counterstained slides with Gill’s hematoxylin. We

determined PCNA-labeling (for mouse tissues), Ki-67-labeling (for human

tissues) and ubiquitin-labeling indices by counting immunostaining-positive

cells after counterstaining with hematoxylin. We counted at least 2,000 cells per

tissue (n ¼ 10 for each mouse model and n ¼ 15 for each human subclass).

Indices are represented as a percentage (mean 7 s.e.) of the total number

of cells counted.

Quantification of apoptosis. We calculated apoptotic indices by counting the

apoptotic figures per 5,000 hepatocytes on tumor sections from 10 tissues per

mouse model and 15 tissues per human subclass. We stained sections with the

ApoTag peroxidase in situ apoptosis detection kit (Serologicals Corporation)

and expressed apoptosis as a percentage (mean 7 s.e.) of the total number of

counted cells.

Quantitative RT-PCR. We generated first-strand cDNA using SuperScript

First-strand synthesis system (Invitrogen) and carried out quantitative PCR

using PRISM/7700 Sequence Detector with the SYBR Green PCR Core

Reagents Kit (Applied Biosystems) as described in the manufacturer’s manual.

We designed primers to detect the following human and mouse mRNAs: ASK

(Ask), GTSE1 (Gtse1), SLC16A2 (Slc16a2) and INHBC (Inhbc). We used GAPD

(Gapd) as the endogenous control. Primer sequences are available on request.

We expressed the relative mRNA expression levels in tissues as �DDCt, in

which DCt is the difference in the threshold PCR cycle (Ct) value of mRNA

and the corresponding internal control GAPD and DDCt is the difference in

the DCt value of each tissue and normal liver.

GEO accession numbers. Human microarray platform, GPL1528; human

HCC microarray data, GSE1898; mouse microarray platform, GPL1529; mouse

HCC microarray data, GSE1897.

Note: Supplementary information is available on the Nature Genetics website.
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